Quadrilaterals and Other Polygons

9.1 Construct and explore polygons

	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\mathrm{O} \text { - No }$ Evidence
Construct triangles and hexagons (G.CO.13)	Can extend thinking beyond the standard, including tasks that may involve one of the following: - Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Construct an inscribed regular hexagon and an inscribed square	Construct an inscribed regular hexagon or an inscribed square	Construct a square given a side	Little evidence of reasoning or application to solve the
Prove quadrilateral properties (G.C.3)		Prove properties of angles for a quadrilateral inscribed in a circle.	Show mathematically properties of angles for a quadrilateral inscribed in a circle.	Identify properties of angles for a quadrilateral inscribed in a circle.	problem Does not meet the criteria in a level 1

G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
G.C. 3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Quadrilaterals and Other Polygons

9.2 Prove theorems about quadrilaterals

	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\begin{aligned} & \hline 0-\text { No } \\ & \text { Evidence } \\ & \hline \end{aligned}$
Prove parallelogram theorems (G.CO.11)	Can extend thinking beyond the standard, including tasks that may involve one of the following: - Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Prove all of the following theorems about parallelograms - opposite sides are congruent, - opposite angles are congruent, - the diagonals of a parallelogram bisect each other, - rectangles are parallelograms with congruent diagonals	Show mathematically all of the following theorems about parallelograms - opposite sides are congruent, - opposite angles are congruent, - the diagonals of a parallelogram bisect each other, - rectangles are parallelograms with congruent diagonals	Identify all of the following theorems about parallelograms - opposite sides are congruent, - opposite angles are congruent, - the diagonals of a parallelogram bisect each other, - rectangles are parallelograms with congruent diagonals	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove with coordinates (G.GPE.4)		Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to prove the types of quadrilaterals	Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to identify the types of quadrilaterals	Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to identify properties of quadrilaterals	

G.CO. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point $(0,2)$.

