Quadrilaterals and Other Polygons

9.1 Construct and explore polygons

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Construct triangles and hexagons (G.CO.13)	Can extend thinking beyond the standard, including	Construct an inscribed regular hexagon <u>and</u> an inscribed square	Construct an <u>inscribed</u> regular hexagon or an inscribed square	Construct a square given a side	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove quadrilateral properties (G.C.3)	tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	Prove properties of angles for a quadrilateral inscribed in a circle.	Show mathematically properties of angles for a quadrilateral inscribed in a circle.	Identify properties of angles for a quadrilateral inscribed in a circle.	

G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

G.C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Quadrilaterals and Other Polygons

9.2 Prove theorems about quadrilaterals

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Prove parallelogram theorems (G.CO.11)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	 Prove all of the following theorems about parallelograms opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, rectangles are parallelograms with congruent diagonals 	 Show mathematically all of the following theorems about parallelograms opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, rectangles are parallelograms with congruent diagonals 	 Identify all of the following theorems about parallelograms opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, rectangles are parallelograms with congruent diagonals 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Prove with coordinates (G.GPE.4)		Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to <u>prove the</u> <u>types of quadrilaterals</u>	Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to <u>identify the</u> <u>types of quadrilaterals</u>	Using coordinate geometry and the Pythagorean, slope, distance, and midpoint formulas to <u>identify</u> <u>properties of</u> <u>guadrilaterals</u>	

G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, v3) lies on the circle centered at the origin and containing the point (0, 2).